

DPP – 1 (Nuclear Physics)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/88

Video Solution on YouTube:-

https://youtu.be/JDpgtnmqww4

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/28

- Q 1. The graph of $\log(\frac{R}{R_0})$ versus $\log A$ (R = radius of a nucleus and A = mass number) is -
 - (a) a circle

(b) an ellipse

(c) a parabola

- (d) a straight line
- Q 2. The range of nuclear forces is about -
 - (a) 2×10^{-10} m
 - (b) 1.5×10^{-20} m
 - (c) 7.2×10^{-4} m
 - (d) 1.4×10^{-15} m
- Q 3. A star initially has 10^{40} deuterons. It produces energy via the processes $_1H^2 + _1H^2 \rightarrow _1H^3 + p$ and $_1H^2 + _1H^3 \rightarrow _2He^4 + n$. If the average power radiated by the star is 10^{16} W, the deuteron supply of the star is exhausted in a time of the order of: [The mass of the nuclei are as follows $M(H^2) = 2.014$ amu; M(n) = 1.008 amu; M(p) = 1.008 amu; $M(He^4) = 4.001$ amu.]
 - (a) 10^6 s
- (b) 10^8 s
- (e) 10^{12} s
- (d) 10^{16} s
- Q 4. Let m_p be the mass of proton, m_n the mass of neutron. M_1 the mass of $^{20}_{10}$ Ne nucleus and M_2 the mass of $^{40}_{20}$ Ca nucleus. Then:
 - (a) $M_2 = 2 M_1$
 - (b) $M_2 > 2 M_1$
 - (c) $M_2 < 2 M_1$
 - (d) $M_1 < 10(m_n + m_p)$
- Q 5. When an electron and positron with equal speeds in opposite direction annihilate each other, they cannot produce just one gamma ray, because that will violate law of—
 - (a) conservation of charge
 - (b) conservation of energy
 - (c) conservation of momentum
 - (d) conservation of nucleon number
- Q 6. The heavier nuclie tend to have larger N/Z ratio because—
 - (a) a neutron is heavier than a proton
 - (b) a neutron is an unstable particle
 - (c) a neutron does not exert electric repulsion
 - (d) coulomb forces have longer range compared to the nuclear forces

hysicsaholics

- Q 7. A proton moving with velocity v₀ moves towards a proton initially at rest and free to move. Find the distance of closest approach.
 - (a) $2\pi\varepsilon_0 m v_0^2$

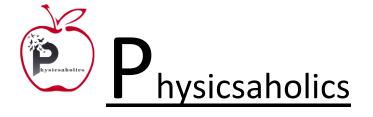
(b) $\frac{e^2}{4\pi\varepsilon_0 m v_0^2}$

(c)

- (d) None of these
- In the fusion reaction, ${}_{1}^{2}H + {}_{1}^{2}H \rightarrow {}_{2}^{3}He + {}_{0}^{1}n$ The masses of deutrons, helium and Q 8. neutron expressed in amu are 2.015, 3.017 and 1.009 respectively. If 1 kg of deuterium undergoes complete fusion. Find the amount of total energy release, 1 amu $= 931 \text{ MeV/}C^2$
 - (a) $6 \times 10^{13} \text{ J}$

(b) $5.6 \times 10^{13} \text{ J}$

(c) $9 \times 10^{13} \text{ J}$

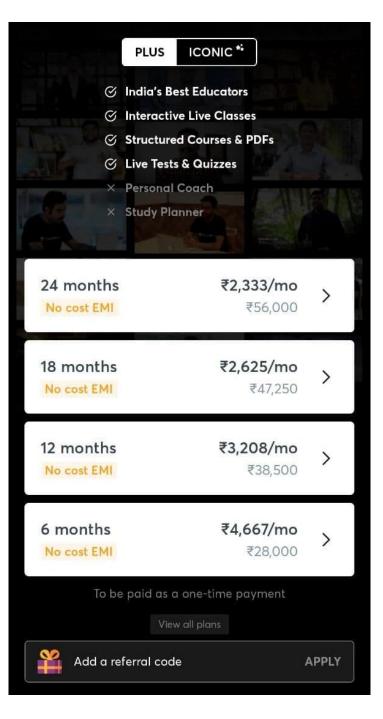

- (d) $0.9 \times 10^{13} \text{ J}$
- Nuclear radius of ${}_8O^{16}$ is 3 fermi. The nuclear radius of ${}_{82}Pb^{205}$ Q 9.
 - (a) 5.02 fermi (b) 5.02 fermi

 - (c) 7.02 fermi (d) 9.02 fermi
- Q 10. In a star, three alpha particles join in succession to form ${}_6\mathrm{C}^{12}$ nucleus. How much energy is evolved in this reaction? Take mass ${}_{6}C^{12} = 12$ amu and that of alpha particle =4.002603 amu
 - (a) 15 MeV

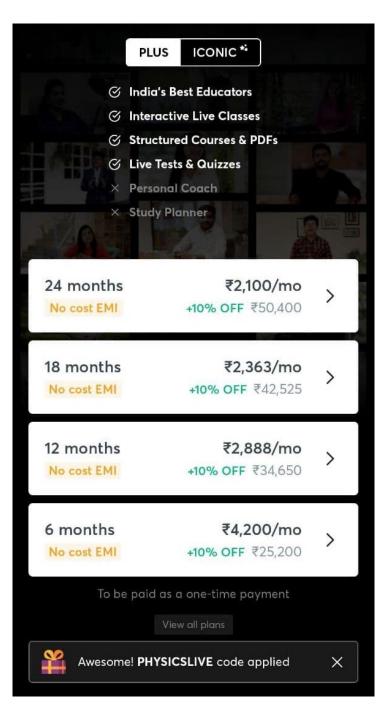
(b) 18 MeV

(c) 7.27 MeV

- (d) 2.917 MeV
- Q 11. Mass defect of an atom refers to-
 - (a) packing fraction of the atom
 - (b) increase in mass over total mass of its constituents to bind the atoms
 - (c) mass annihilated to produce energy to bind the nucleons
 - (d) error in the measurement of atomic masses
- The binding energy of deuteron is 2.2 MeV and that of ${}^{4}He$ is 28 MeV. If two Q 12. deuterons are fused to form one ${}^{4}_{2}He$ then the energy released is -
 - (a) 25.8 MeV
- (b) 23.6 MeV
- (c) 19.2 MeV
- (d) 30.2 MeV
- Q 13. For nuclei with A > 100, mark the incorrect statement -
 - (a) the binding energy per nucleon decreases on the average as A increases
 - (b) if the nucleus breaks into two roughly equal parts, energy is released
 - (c) if two nuclei fuse to form a bigger nucleus energy is released
 - (d)the nucleus with Z > 83 are generally unstable



Answer Key


Q.1	d	Q.2 d	Q.3 c	Q.4 c,d	Q.5 c
Q.6	c,d	Q.7 c	Q.8 c	Q.9 c	Q.10 c
Q.11	c	Q.12 b	Q.13 c		<u> </u>

Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS.

JEE Main & Advanced, NSEP, INPhO, IPhO Physics DPP - Solution

DPP – 1 Nuclear Physics: Distance of closest approach,Nuclear density, Mass defect & Binding EnergyBy Physicsaholics Team

Q1) The graph of $\log\left(\frac{R}{R_0}\right)$ versus $\log A$ (R = radius of a nucleus and A = mass

number) is -

$$R = R_0 A^{1/3}$$

$$\frac{R}{R_0} = A^{\frac{1}{3}}$$

log (Ro) = 3 log A

(a) a circle

(c) a parabola

(b) an ellipse

(d) a straight line

Q2) The range of nuclear forces is about -

(a)
$$2 \times 10^{-10}$$
 m

(b)
$$1.5 \times 10^{-20}$$
 m

(c)
$$7.2 \times 10^{-4}$$
 m

(d)
$$1.4 \times 10^{-15}$$
 m

Q3) A star initially has 10^{40} deuterons. It produces energy via the processes $_1H^2 + _1H^2 \rightarrow _1H^3 + p$ and $_1H^2 + _1H^3 \rightarrow _2He^4 + n$. If the average power radiated by the star is 10^{16} W, the deuteron supply of the star is exhausted in a time of the order of: The mass of the nuclei are as follows $M(H^2) = 2.014$ amu; M(n) = 1.008 amu; M(p) = 1.008 amu; $M(He^4) = 4.001$ amu.

Q4) Let m_p be the mass of proton, m_n the mass of neutron. M_1 the mass of ⁴⁰₂₀Ca nucleus. Then: nucleus and M₂ the mass of

(b)
$$M_2 > 2 M_1$$

(c)
$$M_2 < 2 M_1$$


(d)
$$M_1 < 10(m_n + m_p)$$

Na Ca

$$M = \frac{10 \text{ Mp} + 10 \text{ Mn} - \frac{20 \text{ B}}{20 \text{ K}}}{2 \text{ M}} = \frac{20 \text{ Mp} + 20 \text{ Mn} - \frac{40 \text{ B}}{20 \text{ K}}}{2 \text{ M}} = \frac{20 \text{ Mp} + 20 \text{ Mn} - \frac{40 \text{ B}}{20 \text{ K}}}{2 \text{ M}} = \frac{20 \text{ Mp} + 20 \text{ Mn} - \frac{40 \text{ B}}{20 \text{ K}}}{2 \text{ M}} = \frac{20 \text{ Mp} + 20 \text{ Mn} - \frac{40 \text{ B}}{20 \text{ K}}}{2 \text{ M}} = \frac{20 \text{ Mp} + 20 \text{ Mn} - \frac{40 \text{ B}}{20 \text{ Mn}}}{2 \text{ Mn}} = \frac{20 \text{ Mp} + 20 \text{ Mn}}{2 \text{ Mn}} = \frac{20 \text{ Mp} + 20 \text{ Mn}}{2 \text{ Mn}} = \frac{20 \text{ Mp} + 20 \text{ Mn}}{2 \text{ Mn}} = \frac{20 \text{ Mp} + 20 \text{ Mn}}{2 \text{ Mn}} = \frac{20 \text{ Mp} + 20 \text{ Mn}}{2 \text{ Mn}} = \frac{20 \text{ Mp}}{2 \text{ Mn}} = \frac{20 \text{ Mn}}{2 \text{$$

$$2M_1 = 20 \text{ mp} + 20 \text{ mn} - 40 \text{ B}_1$$
 Since $B_2 > B_2$ My, $< 2M_1$

Q5) When an electron and positron with equal speeds in opposite direction annihilate each other, they cannot produce just one gamma ray, because that will violate law of—

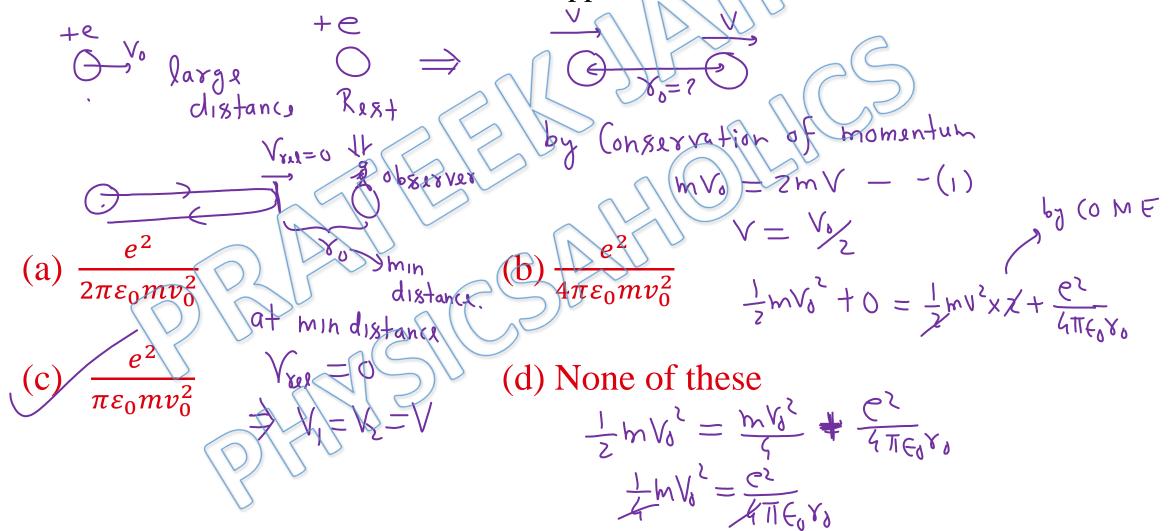
$$B = h v \pm 0$$

$$V_{net} = 0$$

- (a) conservation of charge
- (b) conservation of energy
- (c) conservation of momentum
- (d) conservation of nucleon number

Q6) The heavier nuclie tend to have larger N/Z ratio because-

$$R = R_{\sigma} A^{V_3}$$

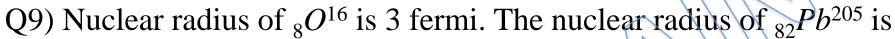

(b) a neutron is an unstable particle

(c) a neutron does not exert electric repulsion

(d) coulomb forces have longer range compared to the nuclear forces

Huelear force = 0

Q7) A proton moving with velocity v_0 moves towards a proton initially at rest and free to move. Find the distance of closest approach.


KE of two pasticle system ast CM = 1/2 h Vsee where h= mimz Ans. c distance 18 mestial frams Conservation of mechanical lhergy wx + LITEO YO TIEOMYO?

Q8) In the fusion reaction, ${}_{1}^{2}H + {}_{1}^{2}H \rightarrow {}_{2}^{3}He + {}_{0}^{1}n$ The masses of deutrons, helium and neutron expressed in amu are 2.015, 3.017 and 1.009 respectively. If 1 kg of deuterium undergoes complete fusion. Find the amount of total energy release, 1 amu = $931 \text{ MeV/}C^2$

8 value = [2×2.015 - 3017 - 1009] 931MeV = [4 030-4 026] 931MeV = .004 × 931 MeV = 3.724 MeV Energy released per deutron atom = 3.724 MeV = 1.862 MeV

atoms = (1000g) X&XIO23 atoms

otal energy released = 3×10° × 1862×16×10¹³

$$R = R_0 \left(\frac{1}{3} \right)^{\frac{3}{3}}$$

$$3f = R_0 \left(\frac{1}{3} \right)^{\frac{3}{3}}$$

$$R = R_0 \left(\frac{2}{3} \right)^{\frac{3}{3}}$$

(a) 5.02 fermi

(b) 5.02 fermi

(d) 9.02 fermi

$$\frac{f}{R} = \frac{3f}{(805)^3}$$

$$6f < R < 7.5f$$
Since $64 < 105.5^{1/3}$

Q10) In a star, three alpha particles join in succession to form ${}_6{\rm C}^{12}$ nucleus. How much energy is evolved in this reaction? Take mass ${}_6{\rm C}^{12}=12$ amu and that of alpha particle = 4.002603 amu

(a) 15 MeV

Q11) Mass defect of an atom refers to -

- (a) packing fraction of the atom
- (b) increase in mass over total mass of its constituents to bind the atoms
- (e) mass annihilated to produce energy to bind the nucleons
- (d) error in the measurement of atomic masses

Q12) The binding energy of deuteron is 2.2 MeV and that of ${}_{2}^{4}He$ is 28 MeV. If two deuterons are fused to form one ${}_{2}^{4}He$ then the energy released is -

Q Valu = BF of Products - BF of reactants= 28 MeV - 22 X2(a) 25.8 MeV
(b) 23.6 MeV
(c) 19.2 MeV
(d) 30.2 MeV Q13) For nuclei with A > 100, mark the incorrect statement -

- (a) the binding energy per nucleon decreases on the average as A increases
- (b) if the nucleus breaks into two roughly equal parts, energy is released
- (c) if two nuclei fuse to form a bigger nucleus energy is released
- (d) the nucleus with Z > 83 are generally unstable

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/88

Video Solution on YouTube:-

https://youtu.be/JDpgtnmqww4

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/28

@Physicsaholics

@Physicsaholics_prateek

@NEET_Physics

@<u>IITJEE_Physics</u>

physicsaholics.com

Unacademy

CUSIS NIKIS